Reduction of geometric and intensity distortions in echo-planar imaging using a multireference scan.

نویسندگان

  • X Wan
  • G T Gullberg
  • D L Parker
  • G L Zeng
چکیده

Echo-planar imaging (EPI) is very sensitive to patient-induced field inhomogeneity caused by susceptibility changes between different anatomical regions. This results in geometric and intensity distortions in the image, especially near tissue/air and tissue/bone interfaces. A new approach is presented to reduce geometric and intensity distortions in EPI. A phase-encoded multireference scan is used to estimate the amplitude and phase errors in the measured signals due to the field inhomogeneity. The EPI data is corrected using both the amplitude and phase of the measured errors. This technique has been evaluated using EPI pulse sequences implemented with conventional gradients and implemented with imaging systems that have special resonating gradients and fast analog to digital converters. The results in both phantom and human studies show that in the absence of object motion the new correction technique can effectively reduce the geometric and intensity distortions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of Phase-Encoding Reduction on Geometric Distortion and BOLD Signal Changes in fMRI

Introduction Echo-planar imaging (EPI) is a group of fast data acquisition methods commonly used in fMRI studies. It acquires multiple image lines in k-space after a single excitation, which leads to a very short scan time. A well-known problem with EPI is that it is more sensitive to distortions due to the used encoding scheme. Source of distortion is inhomogeneity in the static B0 field that ...

متن کامل

Concurrent correction of geometric distortion and motion using the map-slice-to-volume method in echo-planar imaging.

The accuracy of measuring voxel intensity changes between stimulus and rest images in fMRI echo-planar imaging (EPI) data is severely degraded in the presence of head motion. In addition, EPI is sensitive to susceptibility-induced geometric distortions. Head motion causes image shifts and associated field map changes that induce different geometric distortion at different time points. Conventio...

متن کامل

Geometric distortion correction for echo planar images using nonrigid registration with spatially varying scale.

One method used to correct geometric and intensity distortions in echo planar images is to register them to undistorted images via nonrigid deformations. However, some areas in the echo planar images are more distorted than others, thus suggesting the use of deformations whose characteristics are adapted spatially. In this article, we incorporate into our previously developed registration algor...

متن کامل

PROPELLER-EPI with parallel imaging using a circularly symmetric phased-array RF coil at 3.0 T: application to high-resolution diffusion tensor imaging.

A technique integrating multishot periodically rotated overlapping parallel lines with enhanced reconstruction (PROPELLER) and parallel imaging is presented for diffusion echo-planar imaging (EPI) at high spatial resolution. The method combines the advantages of parallel imaging to achieve accelerated sampling along the phase-encoding direction, and PROPELLER acquisition to further decrease the...

متن کامل

Geometric distortion correction in echo volumar imaging

Introduction: Echo volumar imaging (EVI) is a 3D extension of echo-planar imaging (EPI) that allows data from an entire volume to be acquired following a single excitation. However, only a few studies to date have applied EVI to functional MRI (fMRI) due to its high sensitivity to field-inhomogeneity induced distortions. In this study, we extend two EPI distortion correction techniques to EVI: ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Magnetic resonance in medicine

دوره 37 6  شماره 

صفحات  -

تاریخ انتشار 1997